Human Herpesvirus-6 Induces MVB Formation, and Virus Egress Occurs by an Exosomal Release Pathway

نویسندگان

  • Yasuko Mori
  • Masato Koike
  • Eiko Moriishi
  • Akiko Kawabata
  • Huamin Tang
  • Hiroko Oyaizu
  • Yasuo Uchiyama
  • Koichi Yamanishi
چکیده

The final envelopment of most herpesviruses occurs at Golgi or post-Golgi compartments, such as the trans Golgi network (TGN); however, the final envelopment site of human herpesvirus 6 (HHV-6) is uncertain. In this study, we found novel pathways for HHV-6 assembly and release from T cells that differed, in part, from those of alphaherpesviruses. Electron microscopy showed that late in infection, HHV-6-infected cells were larger than uninfected cells and contained many newly formed multivesicular body (MVB)-like compartments that included small vesicles. These MVBs surrounded the Golgi apparatus. Mature virions were found in the MVBs and MVB fusion with plasma membrane, and the release of mature virions together with small vesicles was observed at the cell surface. Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB/late endosome marker, and HHV-6 envelope glycoproteins. The viral glycoproteins also localized to internal vesicles in the MVBs and to secreted vesicles (exosomes). Furthermore, we found virus budding at TGN-associated membranes, which expressed CD63, adaptor protein (AP-1) and TGN46, and CD63 incorporation into virions. Our findings suggest that mature HHV-6 virions are released together with internal vesicles through MVBs by the cellular exosomal pathway. This scenario has significant implications for understanding HHV-6's maturation pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies.

Our previous studies indicated that hepatitis E virus (HEV) forms membrane-associated particles in the cytoplasm, most likely by budding into intracellular vesicles, and requires the multivesicular body (MVB) pathway to release virus particles, and the released HEV particles with a lipid membrane retain the trans-Golgi network protein 2 on their surface. To examine whether HEV utilizes the exos...

متن کامل

Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body.

The human immunodeficiency virus type 1 (HIV-1) assembly-and-release pathway begins with the targeting of the Gag precursor to the site of virus assembly. The molecular mechanism by which Gag is targeted to the appropriate subcellular location remains poorly understood. Based on the analysis of mutant Gag proteins, we and others have previously demonstrated that a highly basic patch in the matr...

متن کامل

A Role for Nuclear F-Actin Induction in Human Cytomegalovirus Nuclear Egress

UNLABELLED Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear int...

متن کامل

Murine Leukemia Virus Spreading in Mice Impaired in the Biogenesis of Secretory Lysosomes and Ca2+-Regulated Exocytosis

BACKGROUND Retroviruses have been observed to bud intracellularly into multivesicular bodies (MVB), in addition to the plasma membrane. Release from MVB is thought to occur by Ca(2+)-regulated fusion with the plasma membrane. PRINCIPAL FINDINGS To address the role of the MVB pathway in replication of the murine leukemia virus (MLV) we took advantage of mouse models for the Hermansky-Pudlak sy...

متن کامل

Herpes simplex virus 1 induces egress channels through marginalized host chromatin

Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. We used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Traffic (Copenhagen, Denmark)

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008